详细内容
镓是化学史上个先从理论预言,后在自然界中被发现验证的化学元素。1871年,门捷列夫发现元素周期表中铝元素下面有个间隙尚未被占据,他预测这种未知元素的原子量大约是68,密度为5.9 g/cm³,性质与铝相似,他的这一预测被法国化学家布瓦博得朗(Paul Emile Lecoq de Boisbaudran)证实了。
镓在巴黎由布瓦博得朗于1875年发现。他在闪锌矿矿石(ZnS)中提
金属镓
金属镓
取的锌的原子光谱上观察到了一个新的紫色线。他知道这意味着一种未知的元素出现了。
在1875年11月,布瓦博得朗提取并提纯了这种新的金属,并证明了它像铝。在1875年12月,他向法国科学院宣布了它。
工业用途
制造半导体氮化镓、砷化镓、磷化镓、锗半导体掺杂元;纯镓及低熔合金可作核反应的热交换介质;高温温度计的填充料;有机反应中作二酯化的催化剂。
镓的工业应用还很原始,尽管它独特的性能可能会应用于很多方面。液态镓的宽温度范围以及它很低的蒸汽压使它可以用于高温温度计和高温压力计。镓化合物,尤其是砷化镓在电子工业已经引起了越来越多的注意。没有能利用的的世界镓产量数据,但是临近地区的产量只有20吨/年。 [11]
镓-68会发射正电子,可以用于正电子断层成像。 [11]
镓铟合金可用于汞的替代品。
医学应用
在观察到癌组织对67Ga有吸引力之后,美国国家癌症学会指出稳定的镓对于啮齿动物的肿瘤很有疗效。这曾在癌症病人身上试验过。当服用剂量为750mg/kg时,镓对人的肾脏有害。不停的灌输镓的配制药品可以降低镓对肾小管的毒性。
钯催化剂(英文名称palladium catalyst)是一种以金属钯为主要活性组分,使用钯黑或钯的盐类将钯载于氧化铝、沸石等载体上,以钠、镉、铅等盐为助催化剂,制成的各种催化剂,是化学和化工反应过程经常采用的一种催化剂,具有催化活性高,选择性强,催化剂制作方便,使用量少,可以通过制造方法的变化和改进,与其他金属或助催化剂活性组分复配,优化性能。应用领域广,能够反复再生和活化使用,寿命长,废催化剂的金属钯可以回收再利用等优越性。许多钯催化剂品种都已成为专利产品应用于各行各业,具有新的结构及催化功能的钯催化剂仍在不断涌现,使许多难以实现的反应过程成为可能,使许多工业生产过程得到改善,是工艺过程简化、经济效益提高,因此钯催化剂的发展前景远大喜人。
钯催化剂的种类和应用
钯催化剂的种类很多,简单地可分为有载体的钯催化剂和无载体催化剂,在实际应用中,基本上都是有载体的钯催化剂,这些载体主要有各种氧化铝、沸石、碳载体等,在化工过程中主要应用在各种加氢还原过程。既有全加氢,也有选择加氢,既有气相过程、也有液相过程。这些典型的过程有:醇、醛、酸、酯、酸酐、芳烃、杂环化物中不饱和键的加氢饱和,加氢还原反应。例如乙烯、丙烯、丁烷丁烯馏分中炔烃、二烯烃的选择加氢脱除。采用含千分之几钯含量的氧化铝载体催化剂。反应条件一般在50~150℃,压力0.5~3MPa,气相或液相进行。又如醋酸或醋酸乙酯加氢生产乙醇,顺丁烯二酸酐加氢生产丁二酸,进一步加氢生产丁二醇。糠醛加氢脱羰基生产呋喃,进一步加氢生产四氢呋喃。一般采用含钯量在百分之几的钯含量的碳载体催化剂,成功地实现了大规模工业化生产。反应条件最为苛刻的是对苯二甲酸中微量对羧基苯甲醛的脱除。对二甲苯氧化生产对苯二甲酸中含有0.1~0.5%的对羧基苯甲醛,后者的存在,影响聚酯的质量,必需去除至25ppm以下,采用含钯6%的钯—碳催化剂,在10MPa及200~300℃高温,对对苯二甲酸水溶液条件下进行加氢反应,实现了对苯二甲酸的精制。